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A REEXAMINATION OF THE USE OF SIMPLE CONCEPTS FOR
PREDICTING THE SHAPE AND LOCATION OF
DETACHED SHOCK WAVES

By Eugene S. Love

SUMMARY

A reexamination has been made of the use of simple concepts for
predicting the shape and location of detached shock waves. The results
show thet simple concepts and modifications of existing methods can yield

good predictions for many nose shapes and for a wide range of Mach numbers.

INTRCDUCTION

In recent years interest has arisen in the problem of predicting
the form and location of detached shock waves. This interest has been
stimilated by the necessity for blunt noses and leading edges on con-
figurations designed for hypersonic flight in order to cope with aero-
dynamic heating. The ability to predict the form and location of the
detached shock is of primary importance in analyses of aerodynamic inter-
ference and serodynamic heating. Knowledge of form and location also has
a more elementary use in that it often influences the cholce of maximum
model size for a given wind tunnel. Numerous experimental and theoreti-
cal studies have been devoted to the determination of form and location
as well as the important factors influencing form and location. (See
refs. 1 to 36, for example.) Many of the studies have been centered
upon particular important details of the problem and, therefore, have
been logically restricted in scope, for example, studles restricted to
hypersonlc speeds or to regions in close proximity to the nose. Other
gtudies have been more general in that they present methode for calcu~
lating detachment distence and shock shape without restrictions on speed
or distance from the body. (See ref. 26, for example.) However, these
methods usually involve laborious characteristic calculations or such
lengthy iterative procedures that they have been evaluated only for one
or two conditions, and, although the results obtained are good, less
laborious methods are preferable if the results obtalned by the simpler
methods are satisfactory. A number of methods have, in the light of
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subsequent experimental results, been shown to be inadequate (see the
evaluations made in refs. 24 and 25, for example) or severely restricted
in application (see ref. 18, for example). o

With the aid of the theoretical and experimental information now
available, a reexamination has been made of the more successful simple
methods and concepts with a view toward (1) extending the range of appli-
cability of—existing methods through modification, (2).presenting simple
methods for predicting shock shape and detachment -distance, and (3) direct-
ing attention to areas where further study is needed. The results are
presented in this paper. In the development of methods for prediction
of—shock shape and detachment distence, a primary objectlve has been to
obtain results sufficiently accurate for most practical engineering appli-
cations. The methods presented are for air only (ratio of specific heats
of 1.4) and are intended for use at supersonic and hypersonic speeds;
the applicability of these methods at—transonic speeds has not been exam-
Ined to any extent. )

SYMBOLS
b distance between most forward polint on shock and nose
of body ' B ’
C constant defining detachment distance (see eq. (2))
C value of (C for convex face of complete hemisphere or

two~-dimensional semicircle symmetrically disposed with
respect to free-stream direction

Co value of C for &, = 8gop (that is, Co=1)

Co0 value of —C for By = 90° (flat face)

D ’ diameter of sphere or cylinder

a! diameter or height in plane of point on body determined
by angle for shock detaechment

F horizontal distance measured from center of spherical
{or circular) nose- or from face of flat nose to point
on shock -

M, - free-stream Mach number .

a slope defined by equation (3)
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Heo

horizontel ordinate (free-stream direction)

horizontal distence from most forward point on shock to
plane containing a'

distance from most forward point of detached shock to
intercept of its asymptote on X-axis (see fig. 9)%

vertical ordinate (normal to free-stream direction)

ratlo of specific heats

semiapex angle of cone (or wedge) or equivalent cone
(or wedge)

semiangle of cone (or wedge) for shock detachment

flow deflection for sonic flow Immediately behind shock

local inclination of detached shock measured with respect
to X-axis that gives sonic velocity behind shock

angle between normal to free-stream direction and control
line (see fig. 9)

‘angle between X-axis and line Jjoining center of sphere
(or cylinder) to corner of cut-off sphere (or cylinder)

free-streem Mach angle

term defined by equations- (C7) and (C8)

DISCUSSION

Shock-detachment distance and 1ts prediction will be considered
prior to shock shape since the shape predictions hinge upon the detach-

ment distance.
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Shock ~-Detachment Distance

Review of general concepts.- It is instructive to review at the out-
set several well-known and fundamentsl fesatures pertinent to shock detach-
ment and detachment distance. To this end, consider the simple cone-
cylinder (or wedge-slab) having a sharp shoulder at the Juncture of-the
cone and cylinder and with.s semispex anglie of 56 and an sttached shock.

As By 1s increased, the shock progresses continuously from a state of

attachment to one of detachment In the manner described by Guderley
(ref. 4) and by Busémemn (ref. 5). As the value of 8y approaches

that for detachment, a region of subsonlc flow existe between the surface
of the cone, the shock, and the sonlc line the origin of which must of
necessity be at the shoulder (refs. 4 and 5) which is the center of expan-
sion Yo supersonic flow. Clearly, no part of the body downstreem of the
sharp shoulder affects the detachment process; and it becomes lmmediately
apparent that the diameter at the shoulder d', and therefore the diam-
eter at the sonic point of the body, is one of the fundesmental parameters
in determining detachment distence. TFor the conexcylinder, the vertex of

the detached shock for values of 80 barely larger than that producing

detachment can be pushed no farther from the shoulder than the dlstance
x' corresponding to the length of the cone that has a gemiapex angle
5det‘ Thus the maximum detachment distance (in the absence of viscous

effects) 1s given by

t
(%‘ST)max = 0.5 cot By, (1)

es has been previously inferred by Guderley (ref. 4) and others. Moeckel
(ref. 9) refers to—this expression as the geometric method for prediciing
detachment dlstance. ) :

Inssmuch as eguation (1) gives the maximum detachment distance,
x'/d' must be expected to decrease as 8o varies from 3., to larger

values. TFrom a physical viewpoint it may be reasoned that, as 80
increases beyond Sdet’ the tilp of the cone recedes toward the shoulder

end loses contact with the shock; once-contact-1is lost and as the cone
tip recedes, the shape of—the shock in the immediate vicinity of the nose
adjusts itself to a shape of more uniform curvature in such a way that
the peak in the detached shock that ovccurs when the cone tip is in close
proximity to the detached shock (see -shadowgraphs of ref. 27) is gradu-
ally eliminated and the front of the shock moves closer to the shoulder.
The observations of Busemann (ref. 5) follow readily: there 1s no appre-
ciable effect of nose shape upon detachment-distance measured Prom the
shoulder unless the nose tip is in close proximity to the detached shock;
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and, except for the case of close proximity, the detachment distance and
the shape of the detached shock between the gonic points on the shock

‘aré determined by the shoulder of the body. In order to locate the effec-
tiveshoulders of bodies that héve rounded noses, that is, bodies not
having sharp shoulders of the type common to the cone-cylinder, Busemann
proposes the use of the most upstream point on the body surface that is
tangent to a line inclined at adet with respect to free-stream direc-

tion but also recognizes that, although this is the important point of
the body, it is not in this case the location of the sonic point. This
concept affords a simple means of correlating detachment distance for
bodies of various shapes, and its general adequacy has been substantisted
by experimental results (refs. 9 and 11, for example) for several dif-
ferent nose shapes and for Mach numbers up to about 3.

Compilation of and general correlation of data on detachment
distance.-~ In the past few years, sdditional experimental information
on detachment distance has been obtained and 1t is of interest to see
whether these additional data may be correlated by the principle of

. Busemann. A compilation of experimental dats according to this principle

(that is, in terms of x'/d‘) is presented in figure 1. When these data
were compiled, it was observed in several sources that some of the experi-
mental dsta gave values of x'/d' +that fell above the curve given by
equation (1) (for example, some of the data of refs. 28 and 33). Since
these points are believed to represent improbable values and were 1in a few
instances recognized by the investigators as being assoclated with large
experimental inaccuracies (ref. 33, for example), they have been omitted
from figure 1. Where necessary, values of Sdet for converting the

detachment distance to the form of x'/d' were obtained from reference 37.

The data of figure 1 show that the parameter x'/d' is & unifylng
one and is Justified throughout the Mach number range of the experimental
data shown. Similar conclusions of earlier studles in the supersonic
speed range thus remaln supported into the hypersonic speed range.
Although the experimental data tend toward a single band of data for both
the two-dimensional and axisymmetric compilations, there are differences
at a given Mach number that can only be attributed to the effects of nose
shape; examnples of these 'éffects and their prediction are shown subse-
quently. The continuity method of Moeckel (ref. 9) is seen to give a
prediction that is in generally good agreement with the band of experi-
mental data. The experimental data shown in figure 1 are for blunt nose

shapes or for conditions where 50 is appreciably larger than Bdet‘

For spheres and for circular cylinders normal to the stream (two-
dimensional), there is a geometric minimum x'/d' defined by the nose
of the sphere and of the circular. cylinder above which all experimental
data must obvicusly lie. The curves defining these minimum values are
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shown at the bottom of figure 1 in order to convey some idea of-the prox-
imity of the shock to the nose of these shapes.

Refinements for particular nose shapes.- On the basis of the avail-
able experimental date, certain refinements cen be made that will enable
a more accurate prediction to be made of detachment distance for certain
nose shapes. A convenient basls for refinement is to modify the expres-
sion for the maximum nondimensionel detachment distance as glven by
equation (1) to the following expression for the detachment distance
under any conditlon:

g—: = 0.5C cot By, (2)

In this expression the factor € 1is to be determined. The upper limit
of C 4is obviously 1 (this limit will be designated CO), and the

lower limit will not be greatly removed from 1 in view of the secondary
effects of nose shape end of the proximity to the curves for maximam
detachment distance shown by the experimental data in figure 1.

Value of C for flat faces.-~ The value of { for flat faces will
be designated as 090. For axisymmetric bodies with flat faces, such

as clrcular disks normel tou the stream or the cone-cylinder with
60 = 90°, a value of 090 = 0,70 appears to give good agreement with

experimental results over the Mach number range of the experimental dats
contained in figure 1. TFor infinite Mach number this simple conversion
yields x'/d' = 0.222; this value compares favorably with a prediction
of Serbin (refs 16) for & circular disk normsl to the stream and, when
expressed in terms of the present parasmeters, ylelds 0.230 {shown to the
far right in fig. 1). There is not as much experimental information on
two~dimensional flabt faces as for axisymmetric ones bub, for the avail-
able two-dimensional deta, a value of- 090 = 0.86 appears to be satis-

factory. (See fig. 1.) For an infinite Mach number this value yields
x'/d' = 0.421 for a two-dimensional flat face.

Value of C for circilar faces.-~ The value of C for the convex
face the generatrix of which 1s the 180° (or greater) arc of a circle
symmetrically disposed with respect to free-stream direction will be
designated by Cc (the subscript c¢ meaning complete to distinguish

complete circular faces from modified circular faces to be considered
subsequently). For complete circular faces, both axisymmetric and two
dimensional, the value of C appears to vary significantly with Mach
number. Filgure 2 presents the variation of Cc with Mach number for

the axisymmetric circular face (or sphere) and for the two-dimensionsal
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circular face (or the circular cylinder normsl to the stream). These
curves were determined from the appropriate experimental date contained
in figure 1. It will be noted that the curves have been extrapolated
slightly beyond the range of the data contained in figure 1.

An interesting comparison can be made between the value of Cc for

a sphere at hypersonic speeds as Indicated by the curve of figure 2 and
the values for detachment distance which Serbin (ref. 36) and Hayes
(ref. 21) have calculated for a sphere for the case of M, approaching

o, The results of Serbin and Hayes may be expressed in terms of Cc'

When this is done (and with ¥ = 1.4), Hayes' prediction yields
C, = 0.825 and Serbin's prediction gives Co = 0.850; the latter value

is in close agreement with the value Cc = 0.857 which the curve of
figure 2 approaches at hypersonic speeds.

Variation for cone-cylinders and wedge-slabs.- For cone-cylinders
having a semlapex engle B, between 5., and 90°, the refinement is

not as readily obtained, but the recognition of certain features permits
e prediction to be made of the effect of varying 80 between Bdet and

90°, and Johnston's experimental measurements of this effect (ref. 27)
afford a ready means of checking a prediction. Consider first the vari-

1
ation of (%T) with' B3et 88 glven by equation (1). If Bg.4 18
replaced by 80 and §T is replaced by the cone length %, an expression

for the variation in cone length with 80 is obtained. This variation
is represented by the curve AA' in the following sketch:

(w15

o]
=

|

[t

50, deg

If the semiapex angle 60 of a cone-cylinder in a flow at constant
supersonic Mach number 1is allowed to increase continuously from some
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very small value to 90°, the following conditions occur. At first the
shock 1s attached and the distance %- between the shoulders of-the cone-

cylinder and the vertex of the attached shock varies according to the
curve AA'. However, when 50 reaches Bdet— (point D) corresponding

to the given Mach number, the distance between the vertex of the- shock
and the shoulder ceases to vary according to the curve -AA'. The value

of (%%) for a detached ghock (point E) has been reached and, with
max ) T Sl T T ..
a further increasse in 80, %% mist decrease according to some curve,

say BB', which defines the variation in detachment distance. It is
apparent that an infinite number of curves of the type BB' may branch
off from the curve AA', since for every value of M, there is a corre-

sponding curve BB'. Point B will never reach A' since for M = o
the value of Gdet is_57.6° for cones (after Maccoll, ref. 35) and about

h5.6° for wedges. The problem is thus one of determining the general
form of the curve BB'.

Guderley (ref. L) has shown that the transition from attached shock
to detached shock is one of contlnuous change. Therefore, it is reason-
able to assume that at point B the slope of the curve BB' will be
equal to the slope of the curve AA'. This slope will be designated by
q &and, from equation (1), it has the value :

q= -0.5 csczsdet (%)

Thus the ordinates and slope of the curve BB' at point B can be cal-
culated. When &, = 90° (point B'), the detachment distence x'/a‘

corresponds to the flat-face condition for which empirical values of C

in equation (2) have already been proposed. The slope of the curve BB!

at B' must be essentially zero, if not—exectly so. Thus the ordinates

and slope at both ends of the curve BB' are obtainable. From the works .
of Guderley and Busemenn, the form of the curve BB' must be such that

x'/d' is always decreasing and the rate of decrease in x'/a' with 89

is greatest at 5det' Consequently, from the know;edge—of the end-point
conditions and the restrictions on the form of the curve, one is led to
suggest that the curve BB' 1is close to being elliptic in form. The
development of the general elliptic equation giving the variation in
x'/d' between 8y = B3et &nd 8y = 90° is given in appendix A.

Predictions of the“variation in detachment distance for cone-
cylinders and wedge-slabs (two-dimensional) according toc appendix A
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are given in figure 3 for several Mach numbers, and comparisons are made
between Johnston's experimental results (ref. 27) at M, = 2,&? and the
predicted variations for this Mach number. The predicted variations
agree closely with the experimental results. The two-dlmensional wedge
data fall slightly above the predicted curve; however, one suspects that
this difference may be attributed to the difficulty in obtaining two-
dimeneionality in experimental investigations of this type (see refs. 11,
2h, 25, and 26, for example) since the experimental dats for the wedge

T
do not show the correct values of (57) for By at M_= 2.45. Fur-
a et o

ther, the experimental date for the wedge are, in general, uniformly higher
than the predicted curve by the amount of the experimental error at Bgzqy-

The same procedure as employed for the prediction of figure 3 may
be used to calculate the variation in x'/d' with M_ for constant 8-

Examples of this prediction are given in figure 4 for a cone-cylinder
at several values of 80. No suliteble experimental data for cone-

cylinders were found for comparison; however, the results of figure 3
lend validity to the predictions of figure 4, and the experimental
results of Griffith (ref. 28) for wedges tend to substantiate the type
of variation shown here when M, 1s decreased below that for detachment.

Variation for cut spheres and cylinders.- One interesting model
that has been used in the study of detachment distance is the so-called
cut sphere (exisymmetric case) or cut cylinder (two-dimensional case).
The cut sphere or cylinder is so termed because the shape of the sphere
or cylinder is altered by actually cutting segments from the sphere or
cylinder or the mod€ls are so constructed that they simulate the effect
of this cutting. TFor example, the diameter of e hemisphere-cylinder
may be reduced by concentric machining such that the nose shape varies
systematically from a hemisphere to a flat face (of zero diameter in
this limit, however). The nondimensionsl results thus obtained (with
the exclusion of the zero-diameter limlt) can be considered 4o be the
same as those that would be obtained, for example, with a number of
models of constant diameter and with varying radius of the nose. A
similer procedure is applicable to the circular cylinder normel to the
stream (two-dimensional) which in the case of actusl cutting amounts to
removing symmetrically disposed segments along parallel planes that are
also parallel to the plane of symmetry and to the free-stream direction.

The cut sphere or cylinder is thus seen to afford a convenient
means for examining the effect upon detachment distence of systematically
varylng the radius of the nose while diameter or height is held constant,
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and thus a range of interesting nose shapes is covered. Further, one is
able to determine the radial point on a sphere or cylinder thaet is most
important 1n fixing detachment distance.

In reference 24, Kim reporte the results of two-dimensional tests
of a cut cylinder at M_ = 4, However, in reference 24 there are some

dlscrepancies in the figures and in the values tabulated and those indi-
cated In the figures of that reference. In order to justify the correc-
tions that are made herein to account for the discrepancies appearing
in reference 24, the shock shapes as reported by Kim are reproduced
herein in figure 5. In order to agree with Kim's tabulated values, the
abscissa scale would need to be condensed as shown. With this modifica-
tion a check is obtained of Kim's quoted values except—for 6 = 300,

for which a value of 0.20 is indicated. (See tabulation at top of
figure 5.) KXim's results are expressed in the-ratio of the distance
between the shock and the nose to the diameter of the complete or uncut
cylinder (8 = 90°). Although this ratio i1s an irrelevant one from an
analytic viewpolnt, 1ts use is more appropriste here-than the use of the
correlating form x‘/d', gince the object is to determine the critical
value of- © which in essence is determining d'. (The criticsgl value

jfﬂ»_ﬁ__ggilgg§_$he_pg__ the nose that separates the portlon oF ﬁﬁé
;%Eg_ﬁhéi.&fﬁenis int‘gﬁE:EIEEEHEE—TFEE‘fﬁéfﬁﬁﬁfi6n that does not?)
ther, by use of Busemann's concept—of—d' and a Tew simple sasumb-
tions, it is possible to calculate the variation of b/D with 8.
In order to calculate this varilation within the framework of the previous
methods employed herein, one recognizes at the ocutset that the value of
C _for the yneut cylinder (Sr sphere) (6 = YO°J Ig different fromr the ™
value of C ZFor tHe flat face (0 = 0Y). The variatIon Ig_"T between
theSe two limits ig thus needed. As a flrst-approximation it may be
assumed that this variation 1s linear; from this assumption it follows
that )

Co = Cqn + © (L)

90

33
Q

where C, is the value of--C for the completecylinder (or sphere),

dC = C, - Cgos Cgg is the value of C .for the flat face, and
48 = 90° - Sdet' From t_he_ previously presented values of Cc and 090,

the linear variation of C with © 1s easlily obtained. With the ald.
of equation (2), the variation of'-x'/d' with © may be calculated and
converted to terms of b/D by the following equation:

b_x' cos 8 _ 1
D-d,sine+ > > (5)
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where 0° £ 6 € 900 - Bget+ For velues of ©  between 90° and

90° - B3et? The present analysis glves constant values of b/D at the
value calculated for © = 90° - Biet (Note that, for this statement
and for equation (5), D is the diameter of the uncut model.)

From the results of figure %, an elliptic vaeriation of C would
appear to be a more Justifiable and accurate representation than the
linear one. The method for computing the elliptic variation is covered
in appendix B.

Figure 6 presents the calculated linear and elliptic varlations of
C for the two-dimensional cylinder of Kim's experiments at M, = k.

Also shown for comparison is the variation in C for wedge-slabs
between 5 = Sdet and By = 90° as considered previously. For con-

venience, both © and B3, are shown as the absclssa, © being merely
900 - 80.

Figure 7 presents Kim's experimental measurements and compares them
with the present predictlons. The correction to the experimental point
at 0 = 300 as shown by figure 5 is included in figure 7, as is a cor-
rection to the point at 6 = 42° which is apparently misplotted in s
similar figure in reference 24 since it does not agree with the quoted
value in reference 24 or the value obtained from the shock locations 7
(reproduced in fig. 5 herqin). Of the present predictions the linear
variation of C gives the better agreement with Kim's data falring but
thls seems to be meaningless for the reasons just stated. When the data
are plotted according to what are believed to be the correct values, the
elliptic prediction is to be preferred and probably lies within the
accuracy of the experimental deta. Kim justifies the critical value of
8 = 48°, obtained by extrapolation, on the grounds that the critical
value of 6 must coincide with "the foot of the last Mach line" or
sonic line, and in support of this statement guotes a calculated critical
value of © of 44°, However, in view of the fact that the value of
8 = 48° was,obtained by extrapolation of & faired curve through sppar=-
ently erroneous points, as shown in figure T herein, this asrgument is
weakened. The present predictions place the critical value of 6 at
51.2° (which is 900 - Bdet as dictated by Busemann's concept). It is

not only possible but highly probable that the foot of the sonle line
occurs at 6 < 51.2° for, as Busemann has pointed out in reference 5,
a peculiarity of the detachment phenomena i1s- that the critical point
which plays the primary role in fixing detachment distance for arbi-
trarily rounded nose shapes turns out to be situated where the flow is
purely supersonic. Both the foot of the sonic line and the foot of the
last characteristic which intersects the sonic line are ahead of this



i2 ' NACA TN 4170

criticel point. However, as also pointed out in reference 5, the body
slope must-decrease to—smaller angles than Bdet"~if the sonlec line is

to complete its enclosure of the subsonic region behind the shock. Thus
what at first glance appears to be a peculiarity actually is a Pulfillment
of a necessary condition.

One may reasonably inquire as to the difference that there would
have been in the predictions of b/D in figure 7 if no account had been
made for the change in C from 090 to Cc' A brief examination shows

that the predictions would suffer considerably. TFor example, if C_ had
been held constant at Cgyg, b/D would have been 0.23 at © = 51.2°

instead of 0.269.

Recently, Mr. Robert W. Rainey of the Langley Leboratory has
obtained results (unpublished) for a series of axisymmetric shapes at
My = 3.55 in which the diameter was held constant—and the radius of

the nose was varied in such a way that the nose shapes veried from a
hemisphere to a flat face. These results are partlcularly interesting
since they include date for a value of 8 wvery close to the critilcal
value predicted by the Busemann concept {90° - Gdet)' The date are ageln

presented in terms of b/D rather than x‘/d' in order to bring out an
important feature of this type-of presentation. These results are shown
in figure 8 and are compared with the predicted curve employing an ellip~
tic variation of C determined according to appendix B. Velues of

x'/d" thus obtained may be converted to—b/D values by the relation

h:&.'..;. 1 - 1 6
D a' 2 tan 6 2 s8in © (6)
for 0° <8< 9° - adet and by the relation
o
L . 818 (5 - ®get) b A L - L (7
D gin © a? 2 tan (900 —-sdet> 2 gin ©

for 90° -5, . <06 £90°, (Note that, for these equations and for the

experimental models of fig. 8, D 1s effectively the diameter of cut
models as contrasted to the results of fig. 7; thus, b/D is not con-
stant for values of @ TDbetween 90° and 90° - B4etr &8 1n fig. 7.) '
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The prediction shows excellent agreement with the experimental
results, and the experimental results confirm the existence of a pre-
dicted knee at 6 = 90° - B3ets 10 this case at 38.5°. The Busemann

concept of the most important point of an arbitrary blunt profile being
determined by sdet is once again clearly substantiated. The results

of figure 8 should serve to correct the impression left by less complete
experiments that the variation of b/D with © Tbetween 0° and 90°
occurs smoothly and without a knee near 6 = 90° - B3e

Shape of Detached Shocks

Initial ¢tonsiderations.- When the methods that have been proposed
for predicting shock shape which do not involve laborious procedures
were examined, the method of Moeckel (ref. 9) appeared to offer the best
possibility, when modified, for giving satisfactory predictions at both
supersonic and hypersonic speeds for nose shapes that do not approach
too closely the condition of attached shock. Thls method has been shown
to give generally satisfactory resulits at supersonic speeds (see refs. 9
and 11, for example) but is known to be inadequate in its present form
8t hypersonic speeds. The method is proposed only for thaet region of
the shock between the sonic points; however, Moeckel's experimental
results show thet the method may for meny nose shapes be satisfactory
as an approximation of the shock shape at distances considerably beyond
the sonic points on the shock.

Before modifications are dilscussed, it would perhaps be worthwhile
to review briefly Moeckel's method. (See ref. 9.) In this method it
is assumed that the shock shape is hyperbolic in form and that its loca-
tion and scale in relation to the body are determined from continuity
considerations involving certain assumptions. These assumptions include
the location of the sonic point on the body by the use of Bdet’ the use

of a‘straight sonic line, and the determination of the sonic point on
the shock by assuming the straight sonic line to be ineclined at an
angle 1 wlth respect to the vertical where 1 i1is equal to

%(Bdet + SS) and B8y is the deflection of the flow at the sonic

point on the shock. As has been recognized by Moeckel, two severe assump-
tions of his method are the use of a straight sonic line and the sonic
line being inclined at 1/2(&3(16,G +8)-

-Development of present method.~ In the present development, major
modifications are made to Moeckel's method. The continuity relation is
not used, and only the trigonometric derivations are retalned. The pres-
ent method employs the results of the first part of this paper to cal-
culate detachment distance instead of the continuity relation of
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reference 9. Secondly, the straight line-erising from the point—on

the body determined by Sdet (see fig. 9) and determining the point on
the shock where the shock inelination €g is equal to that-for sonic
velocity behind the shock is not restricted in inclinstion to a value of
n= l/2<5det + Bs). Further, this straight line is not regarded as being

a sonic line but as a control line that reproduces the effects of the
true sonic line. There are several reasons for this assumption. The
sonic point on the body lies shead of that given by Sdet- (except-for

the case of the sharp shoulder), and the exact sonic line igs curved and
according to reference—26 is, as a general rule, not—normal to the stream
lines at-the sonic points on the body and at the shock; neither is it
necesgsarily normal to the streamlines between these—points. It is clear
then that a straight control line- which reproduces the effects of the

true sonic line will not satisfy the inelination of the true sonic line

at both of its extremities nor, as a general rule, is the control line
likely to be inclined at the mean of the inclinations at the two extrem-
ities of the true sonic line. Further, the inclination n of the con-
trol line that most effectively reproduces the infliuence of the true

sonic line will not necessarily be that which gives a line that appears

to represent best the actual location or average inclination of the true
sonic line. It-follows that—the determination of the value of- n for

the control line by analytic methods would be difficult: However,

since the publication of Moeckel's work (ref. 9), a large number

of experimental shock shapes have been obteined over a wide range of

Mach number. With these experimental results and the advantage of hind-
sight, together with an expression for n derived from Moeckel's trig-
onometric relations, one is able to determine values of 1n from known
shock shapes. This expression for n is given in appendix C, as are
simple relations for converting shock ordinates for circular and flat
noses. Several calculations of 17 quickly revezled thatthe hyperbolic
form of shock shape 15 best adapted to the spherical or circular nose
(rather than the flat) when it is desired to obtain a value of n thsat

is suitable for shock shape both near tc and far from the nose. Conse-
quently, atiention was centered upon obtalning the variation in n for
spherical and circular (two-dimensional) noges. In order to determine

a value of n for.m given Mach number, calculations were made for several
points along the shock and the average was taken of the resulting values of
Nn. In general, the calculated values of 1 ranged spproximately +6°
about the average value at the higher Mach numbers with less scatter at
the lower Maech numbers. It is important to ﬁote:that, whereas the value
of 7 1is obtained by means of the tangent function (see eq. (C3) of
appendix C), and therefore varies within the limits of the principal
values of the tangent (+90°), the actual movement of the control line
(fig. 9) is such.that 7 rotates continuously counterclockwise with
increasing M _. Thus negative angles (calculated from eq. (C3)) have
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been converted to their positive complements (>90° but < 180°) to achieve
compatibility with the rotation of the control line.

Variation of n with M,.- The variation of 7 obtained by the
above procedure is shown in figure 10 for the sphere and the circular
cylinder (two-dimensicnal) together with the values of Sdet’ 88, and

Moeckel's value of l/E(Sdet + 88). The adequacy of the values of 1

obtained in the present analysis will be shown subsequently by using
these values in the calculations of shock shapes and comparing these
calculated shapes with & number of the experimental shapes. The experi-
mental shapes will include some of those from which points were taken

to calculate the average n-values. The striking feature of figure 10
is the increasingly large difference between Moeckel's values (given by

n = l/e(sdet + SS)) and those of the present enalysis. TFor spheres,
the present analysis gives values of 1 that are always greater than
1/2(8det + SS); near My = 8 the present values are aboutza% times

greater. For two-dimensional circulaer cylinders, the present values
fall below 1/2(5det + 53) at the lower Mach numbers and above, at the

higher Mach numbers. With regard to these comparisons with Moeckel's
results, it should be recalled that his method 1s proposed only for the
region between the sonic points of the shock, whereas the present analy-
sis attempts to include the shock beyond the sonic points as well. There
was some Indication thet the values of 17 determined in the present
analysis would be smeller than those shown if the anaslysis had been con-
fined to the portion between the sonic points; however, these smaller
values would still be much larger than l/e(sdet + Ss) at the higher
Mach numbers. '

Shown in the upper right-hand part of figures 10(a) and 10(b) are
three values of 7 that may be indicative of the magnitude to be
expected at infinite Mach number. The value designated tangential n
corresponds to the condition for which the control line becomes parallel
to the nose surface at its point of origin on the surface (that is,

90° + Sdet)' The value designated as being determined from Cc corre-

sponds to the condition for which the control line intersects the axis
of symmetry at the vertex of the shock whose detachment distance is
determined from the value that Cc tends to obtain at hypersonilc speeds

in figure 2 (Cc = 0.857 for spheres and Q.952 for czlinders); this con-

dition implies that the sonic point on the shock is at The vertex of the
shock. The value designated maximum 1 corresponds to the condition of
the control line passing through the tip of the nose on the axis of
symmetry; this condition implies that the shock touches the nose, that
the sonic point on the shock is at the vertex of the shock, and therefore
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that the sonic points on the shock and on the nose coincide. The con-
ditions assoclated with maximum n end n determined from C. require

the control line to pass through the body; this passage through the body
ie not a point for concern since the control line was proposed as repro-
ducling the effect of the sonic line and not as gimulating its loecation
or its termini.

Some interesting simlilarities exist between the variation in 1),
or more properly, the control-line termini obtained in the present anal-
ysis and the termini of the sonic line- obtained by Serbin (ref. 36),
Chester (ref. 31), and apparently by Freeman (ref. 32). Chester's anal-
ysis shows explicitly that for all values of 7 the position of the
sonic point on the body does not-experience large changes as M,
increases from moderate supersonic speeds to speeds approaching infinity,

whereas for all values of ¥ except unlty the sonic point on the shock
experiences significant changes and moves toward the vertex of the shock.

(For 7y = 1, the sonic point—on the shock is indicated to be at the vertex

of the shock.) Thus, for ¥ other than unity, these variations of-the
sonlc points are of the same -type as the variations exhibited by the
terminl of the control_line in the presentanalysis. Both Serbin’s and
Chester's analyses indicate that, when M, = «» and ¥ = 1, the sonic
point on the shock is at the vertex of the shock, the detachment distance
is zero, and the sonic points on the shock and on the body coincide (same
sonic point-condltlions as discussed in the preceding peregraph for maxi-
mum 7). For M, = o and ¥ = 1.k, the same snalyses indicate a finite
detachment distance and the sonic point on the shock and on the body to
be removed from the axis of symmetry. For comparison with the control
line inclination of the present analysis, a straight line connecting the
sonlc points of Chester's snalysis would be inclined at 90° with respect
to the vertical. Thus, although some interesting similarities are

observed between the locations and movements of the sonic points of these _

analyses and the behavior of the control-line inclination and termini
of the present analysis, there are also differences that remind one not
to lose sight of the major dlfferences between the true-sonic line and
the comtrol line, as pointed out—rpreviously.

Effect of € and 1n wupon shock shape.~ The procedure for calcu-
lating the shock shape is outlined in appendix D. It 1s of interest-to-
examine at the outset the effects of changes in C and 7 wupon shock
shape. This is done in figures 11 and 12 by comparing the varlous pre-
dictions with experimental results at M = 1.9% for a hemisphere -
cylinder. TFigure 11 presents the shock shape in terms of 4' and
with horizontel distance referenced to the wvertex of the shock in the

X .
form €§ - 59. (See fig. 9.) This is the same form employed by Moeckel
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in his evaluation of his predictions in references 9 and 11. TFigure 12
presents the shock shape in terms of the meximum diemeter D and with the
horizontel distance referenced to the center of the sphere F/D.

The results of figure 11 show readily (as do the results of fig. 12
by closer examination) that, although C was developed as a means for
obtaining detachment distance, it also has a significant influence on
shock shape. Filgure 11 elso shows that, when this form of presentation
1s used, one may obtain an almost identical prediction with different
combinations of 1 and C =and that these combinstions would glve an
excellent prediction. of the experimentel shock shape (not to be confused
with shock location). One may immediastely conclude that, although this
form of presentation is convenlent for isolating the effects of C, it
could lead.to ambiguities and thus is not in 1tself always adequate in
the present analysis to evaluate the predictions of shock shape. Accord-
ingly, the form of presentation shown in figure 12 has been used. In
this figure are shown the effects of C wupon shock shape and location
for 1 = 1/2(5det + SS) within the C-limits established herein (1.0

and 0.7) for axisymmetric noses and the effects of 17 wupon the shock
shape for the value of C, = 0.804 determined herein for spheres. at

M, = 1.9k, (See fig. 2.) With C, = 0.80k, the position of the shock

at the nose is, as is to be expected, accurately given. With increasing
1 (from Bgs to Moeckel's value, to Bqet» 8nd finally to the value

given by fig. 10), the shock curves downstream more rapidly and the pre-
dictlon given by the present analysis (n = 44° from fig. 10) is in
excellent agreement with the experimental results. The prediction given
by 7 = adet is algso good at this Mach number and the prediction given

by 1 = 1/2(zsdet + 85) 1s falr. From these results and from figure 10,
one sees some basis in the past practice of replacing l/a(adet + Bg)
by Bget When Moeckel's method is used; figure 10 shows that Bgqy

and the curve of the present analysis are in close agreement below about
M, = 2, and above this Mach number the curve for Bgo¢ 1s always nearer

the curve of the present analysis. However, at high Mach numbers this
is indeed a trivial point. One alsoc sees why the use of Moeckel's value
gives reasonable predictions at low Mach numbers, particularly over that
portion of the shock near the nose for which 1t was intended.

les of shock prediction by present method.- Numerous calcula-
tions have been made by the present method of the location and shape of
detached shocks. These calculations have been compared with experimental
results, and some additional random evaluetions of changing n have been
made. Some examples of these comperisons and evaluations are shown in
figures 13 to 17.
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Figure 13 yeproduces the shocks obtained by Kim (ref. 24) on a
two-dimensional circular cylinder at Mach numbers from 1.35 to 6. Shown
for comparison are the predicted shocks with 7 = B3ets Which In essence
equals Moeckel's value of 1/2(5det + SS) for two-dimensional flow, and

with 7n given by figure 10(b). With n-= Sdet or l/E(Sdet + 58), the
predicted shocks curve réarward too repidly at low M, and too slowly at

high My. For example, examine shock shapes at- M, = 1.8 and M, = 6.
With 1 varying according to figure lO(b), the predicted shocks are in
much closer agreement-with the experimental shockg at all Mach numbers.
Figure 15(a) also contains two-dimensional results and shows excellent

agreement between prediction and experiment.

Figures 1h(b), 15(b), 16(a), and 17 compare the predicted shocks
wlth the experimental shocks for hemisphere cylinders for Mach numbers
of 3.55, 5.8, 6.8, and 7.7, respectively. In all instances the present
prediction agrees well with experiment. Figure 16(a) also includes the
prediction with 17 = adet to demonstrate the increasingly large dis-

agreement with experiment that accompanies the use of this value of 1
wlth increasing M,; & prediction with n = 1/2(6det + Bs) would show

larger disagreement with experiment.

Figures 1L(a) and 16(b) show what may be expected in the way  of
predicting the shock for flat-face cylinders alined with the flow at
M, = 3.55 and 6.8, respectively, by converting the corresponding pre-
dicted shocks for a hemispherical nose (figs. 1%(b) and 16(a)) by use
of the Busemsnn concept. For the flat-face condition 4' becomes D
and colncides with the- location of the flat face. Thus, the necessary
conditions for conversion ere simply -

s * e
/flat spherical or circular
and o . _.
F - (x X _x'
flat spherical or circular

The resulting shock shapes for the flat face obtalned by this
conversion are not in good agreement—with the experimental shocks,
particularly at large dlstances from the nose. However, some disagree-
ment is to be expected. The values of n for a flat face would prob-
ably be lesgé then those for a round nose in view of the influence of
the sharp shoulder of the flat face in defining the area between the
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shock and the nose where the flow is choked. Further, the disagreement
at large distences from the nose is in the direction to be expected since
the sharp shoulder of the flat face 1s the source of a centered expansion
which interascts with the shock in a manner that reduces its inclination
more rapidly than would the gradusl expansion from the spherical (or cir-
cular) nose. There is also the possibility that the sharp shoulder pro-
duces & separatlion bubble and an associated overexpansion, but experi-
mental evidence on this point is at present not sufficient to indicate
its significance at moderate or high Mach numbers. In spite of these
shortcomings, it would appear reasonable to regard this prediction as

a suitable first-order prediction for flat faces. The lmportant point

to be gathered from these flat-face predictions is that they indicate

the maximum discrepancy that may be expected in predicting shock shape
by means of the spherical (or circular) calculation for noses that vary
all the way from hemispherical to flat shapes (in the manner of the nose
shapes of fig. 8). As the nose shape departs from the flat and moves
toward the hemispherical, the agreement between prediction and experi-
ment becomes increasingly good.

Figure 17 compares the present predlction with the experimental
results at M, = T7.7 presented by Lees and Kubota in reference 22 for

& hemisphere-cylinder. Also shown are the predictions made in ref-
erence 22 by means of blast-wave theory. The present prediction is in
excellent agreement with the experimental shock.

Shock shapes for blunted cones.- The blunted cone wilth flat or
rounded tip has become increasingly common in hypersonic vehicles.
Attempts were made to adapt the present method of prediction to the
general case of truncated cones but with little success. Characteristic
reflection methods similar to those mentioned by Glese and Bergdolt
(ref. 29) proved to be inadequate primarily because methods that were
sultable for estimating the overexpansion and subsequent convergence
toward conical flow at low Mach numbers were completely inadequate at
high Mach numbers (end vice versa). Nevertheless one point of possible
convenlence was exposed. So long as the semicore angle of the blunted
cone does not exceed sbout 15°. for Mach numbers in the nelghborhocod of 3
and below, decreasing to about 8° at Mach numbers near 8, the effect of
overexpansion in producing a reflex in the shock shape 1s negligible
for all practical purposes, and the shock may be calculated by the usual
procedure with the additional condition that, when its slope deteriorates
to that which would be produced by the cone in the absence of tip blunt-
ness, the slope is maintained constant at this value.
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CONCLUDING REMARKS

A reexamination has been made of the use of simple concepts for
predicting the shape and location of detached shock waves. The results
show that simple concepts and modificatlons of existing methods can
yleld good predictlons for many nose shapes and for a wide range of
Mach numbers.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
Langley Fileld, Va., August 28, 1957.
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DEVELOPMENT OF GENERAL ELLIPTIC EQUATION GIVING THE VARTATION

IN DETACEMENT DISTANCE BETWEEN B8 = 8304 AND 8y = 90°

FOR CONE-CYLINDERS AND WEDGE-SLABS

Consider the general elliptic equation

1 (x Z)2+ 1 ( 2 _
= - = (y = kK)* =1
a2 b2

with center at 1,k and semiaxes & and b.

(A1)

From the sketch

k=Db+ N

(a2)

Differentiating equation (Al) with respect to x and substituting

equation (A2) into it yields

x -1

-b2
——a_2y-2b+N)

Ll

(a3)
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If the glope at x
it follows that

0, y =0 is denoted by q, then from equaticn (A3)

g2 = - 21 (Aly)

Alsoat x=0, ¥y
yields

0, substituting equation (A2) into equation (Al)

a? = 5 122 5 : (A5)
< - (b + N)

Equating (AL) and (A5) gives

- N2 -

Equation (Al) may be expressed as

0 (A7)

b2 b2 b2 . a

(B - [MJy . [LM_N)E+ Lx-0)f - ]

which 1s readlily recognized as a quadratic, the solution for which is
easily obtalned. In terms of the shock-detachment parameters, the con-
stents and varisbles involved in the solution of equation (A7) are

\
x = 20 = Baet
5Te3
1 = 20 - E’de'b
57«3 > (A8)
_ 2
qg = -0.5 cse Sdet
N = p{C -1
03 |
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where p = 0.5 cot 8gey &nd Cgy 1s the value of C for &y = 90°
or the flat-face condition; that is, 090 = 0.70 for cone-cylinders
end  Cg, = 0.8 for wedge-slabs (two-dimensional).

Values of X are determined by allowing 60 to vary between Sdet

and 90°. The corresponding values of y calculated from equation (AT)
are converted to the detachment distance parameter x'/d' by

di

IN

=D +y (A9)
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APPENDIX B

METHOD FOR CALCULATING ELLIPTIC VARTATION
OF C FOR CUT CYLINDERS AND SPHERES

Consider first a typical varlation of x'/d' for a cone-cylinder
(or wedge-slab) as 50 varies between 5det and 90°, that is, the

curve BB' in the following sketch: .

L—° ,

0 90
80, d.eg

det

As shown previously, the maximum value of x'/d' occurs at point B and
at this point C = 1. The minimum velue of x'/d' occurs at point B'
and at this point C 1s equal to that for a flat face or 090 It

is readlily recognized that 090 and point B' also apply to the case of
the cut sphere (or cylinder) for 6 = O°, where 90 - 80, since as

0 approaches 0° the cut sphere approaches a flat face (1imit of & = 0°
excluded); or alternmatively, for the case of constant meximmm diameter
D and varying nose radius R, R/D « when @ = 0° and the face is
flat.

The value of C for the complete sphere (that is, Cc) is always

less than 1, and the corresponding value of—x'/d' may be denoted on
the curve BB', for example, at polnt G. The value of 80 corresponding

to point-G is incidental to the development herein, slnce it merely

defines the cone-cylinder giving the same detachment distance as the com-

plete sphere. The importance of int G lies in the slope at this pdint.
For the cut sphere the slope dC/dd, and the value of C at By = 90°
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are known as is the value of C at 60 < Sdet; in line with the Busemann

concept C 1is assumed to be equal to C, for 60 s Sdet’ Thus the only

quantity needed to determine the elliptic variation (assumed) in C for
the cut sphere is the slope dC/dSO at B4.4- No ready solution was

found for this slope (as contrasted to that for cone-cylinders), but it
is likely close to that which may be determined from the curve 3BB' at
point G. The assumption is therefore made herein that the slope dC/dSO

for the cut sphere at Sdet is equal to that which mey be determined

from this point. The varietion of C for the cut sphere in comparison
with that for the cone-cylinder may thus be sketched:

l |
Cone-cylinder

Cut sphere

L//’—- 8d.et

80, deg 90

90 0
8, deg

and the slope at E is equal to the slope at E'.

The procedure for calculating the elliptic varlation is as follows:
Determine the value of 'Cc at the particular vaelue of M from figure 2.

Substitute this value of C, into the following expression and obtain y:
y = P(Cc - l) (Bl)

where p = 0.5 cot 6det‘ Substitute y into the elliptic equation
(derived in appendix A) and solve for x:

<L>y2 _ [Z(b 42- ln]y + l:ﬁh +2N)2 . ‘lé' (x - 1)2 _ 1} =0 (B2)

oG b b —
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where, as in appendix A,
2 N
2 _ b=l

&= qa(p + N)

b = laN - §°
2N - 1q

-0.5 csczsdet_} (B3)

Q
i

_ 90 - B3et
57.3

P(°90 - 1) |

and C90 = 0.86 for the two-dimensionsl case and 090 = 0.70 for the
axlisymmetric case. ' ’

[}

N

Although it is not required 1n this procedure, 1f one desires the
value of 8y corresponding to the complete sphere (or cylinder), it

may be obtained by substituting this calculated value of x into the
general relation

- 6O B adet ) (Bll)
57.3 ' -

Next, wilth the value of y from equation (Bl) and the value of x
from equation (B2}, calculate dy/dx from

dy _ _ b° 1
i —2[7"7&—»:)} (85)

{5 -

This value of dy/dx equals

; B0 - Bget

a0 = “det
573

which in turn equals
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1
a(x)
T And since -
%
ac . 1 _\d (B6)
as jo! dSo

0

the value of dy/dx from equation (B5) may be substituted into the
following equation : :

ac _

_ac dy (BT)
a5,

dx

g |~

to obtain dC/dSO which is the desired slope at E and E'. (See
gketch.)

It now remains to determine the varlation of C with 60 (ox 8).

In order to do this, the elliptic equation (B2) is used, but note that
the constants q and N are now

ac
q:.——
d50
(B8)
N=Cg - Co
and therefore &2 snd b sare also different. From equation (BY)
and the relation & = 90° - @,
(90° - 8) - & (59)
X =
57.3 9

Iet © vary from 0° to 90° - Bdet’ substitute the corresponding values

of x into the elliptic equation with the indicated change in constants,
and solve for y.
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Obtain values of C from
C=C, +v¥
Substituting these values of € into

1 4

=Cp

Py

gives the variation of x'/d' with 6 (or

NACA TN k170

(B10)

(B11)
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APPENDIX C

DERIVATION OF METHOD FOR CALCULATING 1n FOR KNOWN SHOCK SHAPES
g)l&b

The following quantities are known or can b#’determined according
to the methods suggested in the text: M., B, €55 Bgats C, and

x'

From reference 9 (see also fig. 9 of this paper) and in terms of

the present parameters
2 x.\ 2
y _ 1 X o]
ar E\/(d') ) (d') )

- Similarly, the results of reference 9 can be used to obtain

;
o [PiadPe, =1 (5 ¢ —?-ﬂ) | e

82tan €g —iB:Jéetanggs.; ;%+ tan 7

)

Combining equations (Cl) and (C2) yieldé

tan n = \ka}—c'_)z i [B(%)]z <B2tan s - B\/B-é tan“eq - l> - X pp%tan®e, _ 1
: _g \/B'atan2es -1 /(%)2._ [B(az’_)] 2

-

(c3)

The quantities y/d' and x/d' are the ordinates of a point on the
known shock shape. The shape, however, is usually given or obtained in
terms of the maximum diameter D and with distance in the x-direction
measured from the center of the spherical (or circular) nose or from the
face of & flat nose. ~ThisS distance will be called F herein. The
following simple expressions for obtaining y/d' and x/d' from these
dimensions are given for the spherical (or circular) nose: -
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and for the flat nose: : __
J ¥
a! D.

Values of x/d' are obtained from

e 2@@432

X
ar
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(ch)

(c5)

(c6)

+where the gquantity V has the following value for the spherical (or

circular) nose:

¥y =

2 2
1 F, 81in“B4,¢ + C c085934
coOs8 Sd_e.t_ D 2 S.in . 6det

and for the flat nose:

<
0
I~
!
il
|

A

’

(c7)

(c8)

- e
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APPENDIX D
PROCEDURE FOR CALCULATING SHOCK SHAPE

The following quantities are known or can be determined according
to the methods suggested in the text: M, B, eg; C, 1, B3et, and

. -
(23(_"_ = 0.5C cot Byt - - The value of i)

37 is obtained from equation (C2).

X
With the value of E% thus determined, it is convenient to determine

X
d—x' by assigning positive values to the quantity dé‘-'_' d—?- from zero
upward. The value of % may be calculated from
I _J:-‘\/(i)z (o (p1)
1 t !
cal_-By\a a -

In terms- of the dlameter D +the ordinates become

y:(y)cosa E 4 (p2)
- op tlar det
. b df" . /\f},‘)‘
and : o Z
2 2
5 F _ (_’L _ X—O-)cos Sd . - sin“By.¢ + C cos S3et, (D3)
1 1. e
D d a - 2 sin. adet
If the slope of the shock at any point is desired, it may be
obtained from the relation '
X
g ;
- - dx 2 b's 2
_ ' B‘/(_X_) - (_9.)
.\‘_ - d 1 ‘d.' f)d3
. (R | = °
toy + 9 -
A
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